Shah Ismail
(1) Use the division algorithm to find ged $(104,524)=d$ Then find $c_{1}, c_{2}$ sit $d=524 c_{1}+104 C_{2}$

$$
\frac{\frac{5}{104 \sqrt[524]{5}}}{\frac{520}{4}} \rightarrow \frac{\frac{26}{104}}{\frac{104}{0}}
$$

$$
\begin{gathered}
4=524-(104)(5) \\
c_{1}=1 \quad C_{2}=5
\end{gathered}
$$

(2) Find $\operatorname{gcd}(9,128)=d$

Find $c_{1}, c_{2}$ set $d=128 c_{1}+9 c_{2}$

$$
\begin{aligned}
& \frac{9 \sqrt{128}}{\frac{126}{2}} \rightarrow \frac{2 \sqrt{9}}{\frac{8}{1}} \rightarrow \frac{\text { (1) } \sqrt{2}}{\frac{2}{0}} \quad d=1 \\
& 1=9-(4)(2)
\end{aligned}
$$

$\downarrow$

$$
\begin{aligned}
& 1=9-(4)(128-(14)(9)) \\
& 1=9-(4)(128)+(56)(9) \\
& 1=(-4)(128)+(57)(9) \\
& C_{1}=-4 \quad C_{2}=57
\end{aligned}
$$

1. Use the Euclidean Algorithm to find $d=\operatorname{gcd}(104,524)$

Then find $c_{1}, c_{2} \in \mathbb{Z}$ such that

$$
524 c_{1}+104 c_{2}=d
$$

$1 0 4 \longdiv { 5 2 4 } \quad 4 \longdiv { 2 6 }$
$\frac{520}{4} \quad \frac{80}{24}$
$\frac{24}{0}$

Hence, $\operatorname{gcd}(524,104)=4$ because 4 is the last nonzero remainder.
Using the next to last division, we can express $d$ as a linear combination of 524 and 104 . We find that

$$
4=524-104 * 5
$$

Hence, $c_{1}=1, c_{2}=-5$
2. Use the Euclidean Algorithm to find $d=\operatorname{gcd}(9,128)$

Then find $c_{1}, c_{2} \in \mathbb{Z}$ such that

$$
128 c_{1}+9 c_{2}=d
$$

| $9 \lcm{128}$ | $2 \longdiv { 9 }$ | $1 \longdiv { 2 }$ |
| ---: | ---: | ---: |
| $\frac{90}{38}$ | $\frac{8}{1}$ | $\frac{2}{0}$ |
| $\frac{36}{2}$ |  |  |
|  |  |  |

Hence, $\operatorname{gcd}(9,128)=1$ because 1 is the last nonzero remainder.
Using the next to last division, we can express $d$ as a linear combination of 128 and 9 . We find that

$$
1=9-2 * 4
$$

The first division tells us that

$$
2=128-9 * 14
$$

So $1=9-(128-9 * 14) * 4$, which simplifies to

$$
1=9 * 57-128 * 4
$$

Hence, $c_{1}=-4, c_{2}=57$
1

[^0]
[^0]:    ${ }^{1}$ Made By Sheikh Abdul Raheem Ali b00075108 using LATEX

