

1. Use the Euclidean Algorithm to find d = gcd(104, 524)Then find $c_1, c_2 \in \mathbb{Z}$ such that

$$524c_1 + 104c_2 = d$$

	5	26
Solution: by successive use of the division algorithm we get:	104)524	4)104
	520	80
	4	$\overline{24}$
		24

0

Hence, gcd(524, 104) = 4 because 4 is the last nonzero remainder. Using the next to last division, we can express d as a linear combination of 524 and 104. We find that

$$4 = 524 - 104 * 5$$

Hence, $c_1 = 1, c_2 = -5$

2. Use the Euclidean Algorithm to find d = gcd(9, 128)Then find $c_1, c_2 \in \mathbb{Z}$ such that

$$128c_1 + 9c_2 = d$$

	14	4	2
Solution: by successive use of the division algorithm we get:	9)128	$2\overline{)9}$	1)2
	90	8	2
	$\overline{38}$	1	$\overline{0}$
	36		
	$\overline{2}$		

Hence, gcd(9, 128) = 1 because 1 is the last nonzero remainder. Using the next to last division, we can express d as a linear combined

Using the next to last division, we can express d as a linear combination of 128 and 9. We find that

$$1 = 9 - 2 * 4$$

The first division tells us that

$$2 = 128 - 9 * 14$$

So 1 = 9 - (128 - 9 * 14) * 4, which simplifies to

$$1 = 9 * 57 - 128 * 4$$

Hence, $c_1 = -4, c_2 = 57$

¹Made By Sheikh Abdul Raheem Ali b00075108 using IAT_EX